Improving the Prediction for the NASA High-Lift Trap Wing Model

by

Peter Eliasson, Shia-Hui Peng, Ardeshir Hanifi FOI, Swedish Defence Research Agency

Layout of presentation

- ☐ Summary of results presented at the workshop in June
 - > Grid convergence
 - Maximum lift predictions
 - Investigation of three turbulence models
- Improving the predictions
 - Sensitivity to artificial dissipation
 - Approximation of the viscous operator
 - Including the brackets ("real geometry")
 - Transition prediction and specification
- Summary and conclusions

Model geometry and flow conditions

- - AR 4.56, taper ratio 0.4, leading edge sweep φ=33.9°
- Experimental data from NASA Langley
 - Flow conditions $M_{\infty}=0.2$, Re= 4.3×10^6
- Two flap settings
 - > Configuration 1: flap deflection 25° (most computations for this deflection)
 - Configuration 8: flap deflection 20°
- **Brackets**
 - Part of the "real geometry" measured
 - Most calculations neglected these devices for the workshop

Grids

DLR grids, Configuration 1	Coarse	Medium	Fine
# nodes	12.3×10 ⁶	37.0×10^6	110.7×10 ⁶
# boundary nodes	328×10^{3}	683×10^{3}	1421×10^{3}
# hexahedral elements	11.2×10^6	34.1×10^6	103.3×10^6
# prisms	42×10^{3}	92×10^{3}	217×10^{3}
# tetrahedral elements	5.3×10^{6}	13.3×10^6	36.3×10^6

- □ DLR grids generated with SOLAR grid generator
- Unstructured hexahedral elements mainly in near field
 - > Tetrahedral elements further away
- Configuration 8 similar in size as medium grid for Configuration 1
- Configuration 1 with bracket slightly finer than medium 1 grid without rackets
 - About 50 million nodes

Grids pictures

- ☐ Grids for grid refinement study
 - ➤ Configuration 1, no brackets

Grids pictures

- ☐ Structured layer constant in size for all grids
- □ Very similar grid resolution with/without brackets

Computational information

- ☐ Edge in-house code for unstructured grids
- ☐ Finite volume, node centered, edge-based
- □ 3-4 level W-cycles, full multigrid
 - Semi coarsening, 1:4
- □ 3-stage Runge-Kutta scheme, CFL=1.25
- Central scheme with artificial dissipation for mean flow
 - Central or upwind for turbulence
- ☐ Linux cluster used, up to 128 processors
 - Computing time ~ (128*) 24 hours for finest grids (~110 M nodes)
- Weak boundary conditions on all variables including no-slip velocity
 - AIAA 2009-3551
- ☐ Line-implicit time integration in regions with stretched grids
 - > AIAA 2009-163

Approximation of viscous operator

Viscous stress tensor:

$$\tau\!=\!(\mu\!+\!\mu_{\!T})\!\!\left(\nabla\!u\!+\!(\nabla\!u)^{\!T}\!-\!\frac{2}{3}(\nabla\!\cdot\!u)I\right)$$
 Thin layer approximation of viscous flux:

$$\tau \cdot n \approx \mu (\frac{\partial u}{\partial n} + \frac{1}{3} (\frac{\partial u}{\partial n} \cdot n) n)$$

where τ is the stress tensor and n the unit normal between two nodes on an edge

Approximation of normal derivatives:

$$\frac{\partial \varphi}{\partial n_{01}} = \frac{q_1 - q_0}{|x_1 - x_0|}$$

For a full viscous operator: Remaining tangential derivatives added from nodal gradients:

$$\nabla \varphi_0 = \frac{1}{V_0} \sum_{i} \frac{(\varphi_i + \varphi_0)}{2} n_{i0} S_{i0}$$

Typical convergence rates

- \Box Coarse, medium fine grids, $\alpha = 13^{\circ}$
- ~ 3000 iterations required

Summary of results from workshop in June 2010

- ☐ Investigation of three turbulence models
- ☐ Grid convergence
- Maximum lift predictions
- ☐ Thin-layer approximation used
- ☐ Fully turbulent calculations

- ☐ Models: SA, EARSM, SST
- ☐ Lower lift with EARSM, SST
- ☐ Earlier lift break down with EARSM, SST

- ☐ Skin friction plot, x-component (blue = reversed flow)
- ☐ Larger trailing edge flap separation at lower incidences with EARSM, SST
- □ Very small trailing edge flap separation with SA

- □ Attached flap flow at higher incidences
- ☐ Differences on slat and main wing at higher incidences

- ☐ Larger experimental discrepancies with EARSM ,SST
- Large deviations at the wing tip
- ⇒ Stay with SA for the rest of the investigation

Grid convergence, Configuration 1

- □ Reasonable grid convergence
 - > Small differences between grids, not monotonic though

Grid convergence, Configuration 1

- □ Polars on coarse medium and fine grids
 - \triangleright Only 2 incidences on finest grid (α =13°, α =28°)
- ☐ Small differences between results on different grids
 - Small under prediction of C_L, higher incidences
 - > Lift break down at about α=36°
 - Over-prediction of C_M

Pressure distributions, Configuration 1

- ☐ Coarse, medium fine grids
- ☐ Small variations
- Large deviations at the wing tip
 - Not due to grid resolution

Configuration 8

- ☐ Configuration 8 smaller flap deflection angle 20° (reduced from 25°)
- ☐ Slightly lower lift
- Same behavior as Configuration 1 ⇒ no added value

Configuration 1 + brackets

Conclusions of results from workshop in June 2010

- ☐ SA model provides better results than other models
- ☐ Influences from grid resolution small
- \square Small under prediction of C_L , over-prediction of C_M
- ☐ Introducing brackets increased distance to experiments
- ☐ Similar results to many other participants
- ☐ FOI results denoted as "fair"

Further investigations after workshop

- ☐ Reducing artificial dissipation
- ☐ Full viscous operator
- □ Laminar-turbulent transition
- ☐ Geometry with brackets used mostly

Effect of reducing artificial dissipation

- \Box Configuration 1, $\alpha=28^{\circ}$, no brackets
- Only reduction of artificial dissipation on turbulence eq. possible
 - Central scheme introduced with very small coeff.
- No inboard influence
 - Some influence at wing tip
- ⇒ Limited influence

Effect of Viscous Operator

- Comparison thin-layer vs. full viscous operator
- Configuration 1, no brackets, medium grid
- ☐ Larger influence
 - Small over-prediction of C_L with full operator
 - Improved prediction of C_M

Effect of Viscous Operator, Grid Convergence

- Small differences due to different grids and operators
- Monotonic convergence with full operator
- \Box Higher $C_L + C_D$ and lower C_M , closer to experiments

Effect of Viscous Operator

- ☐ Comparison thin-layer vs. full viscous operator
- Cf distribution, x-component
- No inboard influence
- Large influence on wing-tip flow

Effect of Viscous Operator

- No inboard influence
- Large influence on wing-tip flow ≥ 85% span
- ⇒ Full viscous operator gives improved prediction
- Note: brackets not included!

Effects of brackets

- Configuration 1, medium grids, with/without brackets
- Full viscous operator
- Brackets lead to
 - Lower lift at higher incidences, maximum lift 5% lower
 - ➤ Earlier lift (34°) break down (at 37° with brackets)
 - ➤ Larger values of C_M with larger discrepancies to experiments

Effects of brackets

- \Box C_P with/without brackets, α =28°
- ☐ Some improved predictions
 - Mainly at flap and rear wing
- ⇒ C_P improved but lift too low
- ☐ So far fully turbulent calculations

Influence from transition

- Influence from transition investigated by transition prediction
- □ Data base method applied in 20 span—wise sections
 - Infinite local sweep assumed of each element
 - TS and cross-flow waves
 - \triangleright Data based method with e^N with an envelope method
 - Transition assumed where N=15 or where laminar separation detected
- Pressure distribution from RANS
 - Input to boundary layer code and transition prediction
 - Cp from configuration without brackets
- Output used to prescribe turbulent/laminar parts CFD
 - Turbulent production switched off in laminar parts
 - Applied to configuration with brackets

Laminar/turbulent areas, upper and lower sides

- Carried out for each angle of attack on configuration with brackets
 - \rightarrow $\alpha > 28^{\circ}$ use same areas as for $\alpha = 28^{\circ}$
- Upper side of slat laminar α ≤ 13°
- Leading edge of main wing and flap laminar
- Lower side of wing and flap partly laminar
- Similarities and differences compared to AIAA 2005-5148 (McGinley et al.)

Influence from transition

- ☐ Configuration 1, medium grids, with brackets
- ☐ Improved prediction with laminar areas prescribed
 - Higher lift at all angles
 - Later lift break down
 - Very good match of C_M with experiments

Influence from transition

- \Box C_P with/without transition, $\alpha=28^{\circ}$
- ☐ Improved predictions
 - At flap and rear main wing
 - Along entire span
- ☐ Flap suction still under predicted

Summary of CFD investigation of HL trap wing

- SA model provides better predictions than other models
 - ➤ Why?
- ☐ Grid convergence show small differences between results
 - Much smaller than those from turbulence model

Improved CFD predictions from

- Full viscous operator
- Using "real geometry" including brackets
- Including predicted/prescribed transition
 - Some open issues: N-factors, brackets influence ...
- Combining the above

